The Null Steady-State Distribution of the CUSUM Statistic
نویسندگان
چکیده
We develop an empirical approximation to the null steady-state distribution of the cumulative sum (CUSUM) statistic, defined as the distribution of values obtained by running a CUSUM with no upper boundary under the null state for an indefinite period of time. The derivation is part theoretical and part empirical and the approximation is valid for CUSUMs applied to Normal data with known variance (although the theoretical result is true in general for exponential family data, which we show in the Appendix). The result leads to an easily-applied formula for steady-state p-values corresponding to CUSUM values, where the steady-state p-value is obtained as the tail area of the null steady-state distribution and represents the expected proportion of time, under repeated application of the CUSUM to null data, that the CUSUM statistic is greater than some particular value. When designing individual charts with fixed boundaries, this measure could be used alongside the average run-length (ARL) value, which we show by way of examples may be approximately related to the steady-state p-value. For multiple CUSUM schemes, use of a p-value enables application of a signalling procedure that adopts a false discovery rate (FDR) approach to multiplicity control. Under this signalling procedure, boundaries on each individual chart change at every observation according to the ordering of CUSUM values across the group of charts. We demonstrate practical application of the steady-state p-value to a single chart where the example data are number of earthquakes per year registering > 7 on the Richter scale measured from 1900 to 1998. Simulation results relating to the empirical approximation of the null steady-state distribution are summarised, and those relating to the statistical properties of the proposed signalling procedure for multiple CUSUM schemes are presented.
منابع مشابه
A two-sided Bernoulli-based CUSUM control chart with autocorrelated observations
Usually, in monitoring a proportion p < /em>, the binary observations are considered independent; however, in many real cases, there is a continuous stream of autocorrelated binary observations in which a two-state Markov chain model is applied with first-order dependence. On the other hand, the Bernoulli CUSUM control chart which is not robust to autocorrelation can be applied two-sided co...
متن کاملTesting for Change in Mean of Independent Multivariate Observations with Time Varying Covariance
We consider a nonparametric CUSUM test for change in the mean of multivariate time series with time varying covariance. We prove that under the null, the test statistic has a Kolmogorov limiting distribution. The asymptotic consistency of the test against a large class of alternatives which contains abrupt, smooth and continuous changes is established. We also perform a simulation study to anal...
متن کاملExtreme Value Distribution of a Recursive–type Detector in a Linear Model
We study a CUSUM–type monitoring scheme designed to sequentially detect changes in the regression parameter of an underlying linear model. The test statistic used is based on recursive residuals. Main aim of this paper is to derive the limiting extreme value distribution under the null hypothesis of structural stability. The model assumptions are flexible enough to include very general classes ...
متن کاملSteady Flow Analysis and Modeling of the Gas Distribution Network Using the Electrical Analogy (RESEARCH NOTE)
The mathematical modeling of a gas network is a powerful tool in order to identify the behavior of system under the different conditions. The modeling can be performed both for the steady state and unsteady state conditions. It is possible to use the fluid flow basic governing equations or the electrical analogy concept for developing the model. The second approach provides a simpler and more r...
متن کاملSteady-State Behavior of Fraction Nonconforming Control Charts Using Sign Statistic
In the previous two Chapters, we proposed fraction nonconforming nonparametric control charts to monitor process location and process variability. It is also shown that performance of proposed control charts are superior to that of the Shewhart X and sign charts. If process is running in an in-control state for a long period, it will reach in steady-state mode. In order to characterize long-ter...
متن کامل